

~the 7th Sweden-Japan Academic Network seminar~

To be or not to be a lichen?

Using genomics to interpret lifestyles in fungi

Mieko Kono

The Royal Swedish Academy of Sciences 01.02.2019

~ Aug. 2018

SOKENDAL SOKENDAL

The Graduate University for Advanced Studies

Sept. 2018~

What are lichens?

How are they genetically organized?

Symbiosis-specific genes?

Symbiotic lifestyle requires morphological, physiological, biochemical changes

How can we identify symbiosisspecific genes?

Symbiosis-specific genes are expressed more abundantly in the symbiotic state

Compare the gene expression between **before** and **after** the symbiosis

Compare the gene expression between...?

Thalli in the field are expose to complex environment distinct from the culture condition in the lab.

Can we reproduce lichens in the lab?

Stage 1: Pre-contact

Stage 2: Contact

Stage 3: Growth together

Stage 4: Incorporation of symbionts into a

common matrix

Stage 5: Thallus differentiation

Many attempts have been made but...

Predicted functions of symbiosis-specific genes

Stage 1 & 2Cladonia grayiJoneson et al. (2011) MycologiaStage 1Endocarpon pusillumWang et al. (2014) BMC Genomics

What kind of genes are expressed in the later stages and in the natural habitat?

Symbiotic model of Usnea hakonensis

Established by Dr. Yoshiaki Kon

Searching for symbiosis-specific genes by using the *Usnea hakonensis* model

Dr. Yoshihito Ohmura

Dr. Yoshiaki Kon

Dr. Yoko Satta

Dr. Yohey Terai

Whole genome sequencing

Fungus

Alga

	U. hakonensis	Trebouxia sp.
Genome size	41 Mb	69 Mb
Gene number	21,105	21,207

3 Gb = 3000 Mb

138 Mb

fruit fly

12 Mb

baker's yeast

1 base pairs (bp)

1 kb = 1000 bp

1 Mb = 1000000 bp

Symbiosis-specific genes

305 fungal and 204 algal genes were identified as "symbiosis-specific" genes

Functions of symbiosis-specific genes

Symbiosis-specific genes		
Fungus	305	
Alga	204	

Are there similar genes with known function?

Perspectives

- Identify the role of the bacterium in the symbiosis.
- Identify other symbiotic partners required to reproduce a lichen thallus in the lab.

How did lichens evolve?

Is there an universal set of symbiosisspecific genes?

Lichens or Saprotrophs or Both?

Stictidaceae

Closely related species with various lifestyles

What is the genetic background of each lifestyle?

Compare the genetic features among the three fungal species in Stictidaceae

Optional lichenization

Schizoxylon albescens

Choose the lifestyle depending on the environment (substrate)

Option 1: Lichenized style

In and around cracks in the bark

Associated with algae that provide nutrients

Option 2: Saprotrophic style

On dead, decorticated branches

No algae!

Exploit the substrates for nutrients

Identify genes related to each lifestyle

Step 1 Compare the genomic structures

Identify genes related to each lifestyle

Step 2 Investigate the gene expression of *Schizoxylon albescens* in different lifestyles

Lichenized lifestyle ← → Saprotrophic lifestyle

Genes involved in the fungal-algal recognition and physiological interaction.

Genes involved in the exploitation of substrate.

Our goal

Identify the genes that involve in the choices of lifestyles in fungi

Understand lichenizaiton in the context of fungal evolution

How far have we gotten?

Culturing the fungi in the laboratory

Cut out one fruiting body

Culture 1 month on an agar plate

Transfer a fungal colony to a new plate

1~2 months

READY!

Stictis radiata
Schizoxylon albescens

Preparing DNA for the whole genome sequencing

Growing fastest ever!

Acknowledgements

Work in Japan

Dr. Yoshiaki Kon Tokyo Metropolitan Hitotsubashi High School

Dr. Yoshihito Ohmura National Museum of Nature and Science

Dr. Yohey Terai

Dr. Yoko Satta

SOKENDAI (The Graduate University for Advanced Studies)

This research was granted by:

Sasaç

Thank you for your attention

Work in Sweden

Professor Mats Wedin

Bodil Cronholm

Swedish Museum of Natural History

Professor Göran Thor Swedish University of Agricultural Sciences

Dr. Lucia Muggia University of Trieste

This research was granted by:

Swedish Research Council (Vetenskapsrådet) through the project "Fungal phylogeny and evolution", grant VR 2016-03589

